Copied to
clipboard

G = C62.47D6order 432 = 24·33

30th non-split extension by C62 of D6 acting via D6/C2=S3

non-abelian, supersoluble, monomial

Aliases: C62.47D6, (C6×C12)⋊4S3, He38(C4○D4), He37D45C2, He35D48C2, He34Q88C2, (C3×C12).55D6, C326(C4○D12), (C4×He3).40C22, (C2×He3).32C23, C3.2(C12.59D6), He33C4.17C22, (C22×He3).34C22, (C2×C4×He3)⋊5C2, C12.93(C2×C3⋊S3), (C4×He3⋊C2)⋊8C2, C6.64(C22×C3⋊S3), (C2×C12).24(C3⋊S3), (C2×C4)⋊3(He3⋊C2), (C3×C6).42(C22×S3), C4.16(C2×He3⋊C2), C22.2(C2×He3⋊C2), C2.5(C22×He3⋊C2), (C2×He3⋊C2).17C22, (C2×C6).27(C2×C3⋊S3), SmallGroup(432,387)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C62.47D6
C1C3C32He3C2×He3C2×He3⋊C2C4×He3⋊C2 — C62.47D6
He3C2×He3 — C62.47D6
C1C12C2×C12

Generators and relations for C62.47D6
 G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, cac-1=ab2, dad-1=a-1b, bc=cb, bd=db, dcd-1=c5 >

Subgroups: 797 in 220 conjugacy classes, 53 normal (21 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, C2×C6, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, He3, C3×Dic3, C3×C12, S3×C6, C62, C4○D12, C3×C4○D4, He3⋊C2, C2×He3, C2×He3, C3×Dic6, S3×C12, C3×D12, C3×C3⋊D4, C6×C12, He33C4, C4×He3, C2×He3⋊C2, C22×He3, C3×C4○D12, He34Q8, C4×He3⋊C2, He35D4, He37D4, C2×C4×He3, C62.47D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, C2×C3⋊S3, C4○D12, He3⋊C2, C22×C3⋊S3, C2×He3⋊C2, C12.59D6, C22×He3⋊C2, C62.47D6

Smallest permutation representation of C62.47D6
On 72 points
Generators in S72
(1 26 61 20 50 46)(2 35 70 17 59 43)(3 32 67 18 56 40)(4 29 64 19 53 37)(5 60 48 21 36 63)(6 57 45 22 33 72)(7 54 42 23 30 69)(8 51 39 24 27 66)(9 49 41 13 25 68)(10 58 38 14 34 65)(11 55 47 15 31 62)(12 52 44 16 28 71)
(1 21 14 3 23 16)(2 22 15 4 24 13)(5 10 18 7 12 20)(6 11 19 8 9 17)(25 35 33 31 29 27)(26 36 34 32 30 28)(37 39 41 43 45 47)(38 40 42 44 46 48)(49 59 57 55 53 51)(50 60 58 56 54 52)(61 63 65 67 69 71)(62 64 66 68 70 72)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 18 3 20)(2 19 4 17)(5 21 7 23)(6 22 8 24)(9 13 11 15)(10 14 12 16)(25 64 31 70)(26 69 32 63)(27 62 33 68)(28 67 34 61)(29 72 35 66)(30 65 36 71)(37 49 43 55)(38 54 44 60)(39 59 45 53)(40 52 46 58)(41 57 47 51)(42 50 48 56)

G:=sub<Sym(72)| (1,26,61,20,50,46)(2,35,70,17,59,43)(3,32,67,18,56,40)(4,29,64,19,53,37)(5,60,48,21,36,63)(6,57,45,22,33,72)(7,54,42,23,30,69)(8,51,39,24,27,66)(9,49,41,13,25,68)(10,58,38,14,34,65)(11,55,47,15,31,62)(12,52,44,16,28,71), (1,21,14,3,23,16)(2,22,15,4,24,13)(5,10,18,7,12,20)(6,11,19,8,9,17)(25,35,33,31,29,27)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,40,42,44,46,48)(49,59,57,55,53,51)(50,60,58,56,54,52)(61,63,65,67,69,71)(62,64,66,68,70,72), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,18,3,20)(2,19,4,17)(5,21,7,23)(6,22,8,24)(9,13,11,15)(10,14,12,16)(25,64,31,70)(26,69,32,63)(27,62,33,68)(28,67,34,61)(29,72,35,66)(30,65,36,71)(37,49,43,55)(38,54,44,60)(39,59,45,53)(40,52,46,58)(41,57,47,51)(42,50,48,56)>;

G:=Group( (1,26,61,20,50,46)(2,35,70,17,59,43)(3,32,67,18,56,40)(4,29,64,19,53,37)(5,60,48,21,36,63)(6,57,45,22,33,72)(7,54,42,23,30,69)(8,51,39,24,27,66)(9,49,41,13,25,68)(10,58,38,14,34,65)(11,55,47,15,31,62)(12,52,44,16,28,71), (1,21,14,3,23,16)(2,22,15,4,24,13)(5,10,18,7,12,20)(6,11,19,8,9,17)(25,35,33,31,29,27)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,40,42,44,46,48)(49,59,57,55,53,51)(50,60,58,56,54,52)(61,63,65,67,69,71)(62,64,66,68,70,72), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,18,3,20)(2,19,4,17)(5,21,7,23)(6,22,8,24)(9,13,11,15)(10,14,12,16)(25,64,31,70)(26,69,32,63)(27,62,33,68)(28,67,34,61)(29,72,35,66)(30,65,36,71)(37,49,43,55)(38,54,44,60)(39,59,45,53)(40,52,46,58)(41,57,47,51)(42,50,48,56) );

G=PermutationGroup([[(1,26,61,20,50,46),(2,35,70,17,59,43),(3,32,67,18,56,40),(4,29,64,19,53,37),(5,60,48,21,36,63),(6,57,45,22,33,72),(7,54,42,23,30,69),(8,51,39,24,27,66),(9,49,41,13,25,68),(10,58,38,14,34,65),(11,55,47,15,31,62),(12,52,44,16,28,71)], [(1,21,14,3,23,16),(2,22,15,4,24,13),(5,10,18,7,12,20),(6,11,19,8,9,17),(25,35,33,31,29,27),(26,36,34,32,30,28),(37,39,41,43,45,47),(38,40,42,44,46,48),(49,59,57,55,53,51),(50,60,58,56,54,52),(61,63,65,67,69,71),(62,64,66,68,70,72)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,18,3,20),(2,19,4,17),(5,21,7,23),(6,22,8,24),(9,13,11,15),(10,14,12,16),(25,64,31,70),(26,69,32,63),(27,62,33,68),(28,67,34,61),(29,72,35,66),(30,65,36,71),(37,49,43,55),(38,54,44,60),(39,59,45,53),(40,52,46,58),(41,57,47,51),(42,50,48,56)]])

62 conjugacy classes

class 1 2A2B2C2D3A3B3C3D3E3F4A4B4C4D4E6A6B6C6D6E···6P6Q6R6S6T12A12B12C12D12E12F12G···12V12W12X12Y12Z
order122223333334444466666···6666612121212121212···1212121212
size1121818116666112181811226···6181818181111226···618181818

62 irreducible representations

dim111111222223336
type+++++++++
imageC1C2C2C2C2C2S3D6D6C4○D4C4○D12He3⋊C2C2×He3⋊C2C2×He3⋊C2C62.47D6
kernelC62.47D6He34Q8C4×He3⋊C2He35D4He37D4C2×C4×He3C6×C12C3×C12C62He3C32C2×C4C4C22C1
# reps1121214842164844

Matrix representation of C62.47D6 in GL5(𝔽13)

92000
1111000
0012120
00100
00801
,
120000
012000
00300
00030
00003
,
05000
85000
004012
0001010
000012
,
1111000
92000
00033
00901
000012

G:=sub<GL(5,GF(13))| [9,11,0,0,0,2,11,0,0,0,0,0,12,1,8,0,0,12,0,0,0,0,0,0,1],[12,0,0,0,0,0,12,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[0,8,0,0,0,5,5,0,0,0,0,0,4,0,0,0,0,0,10,0,0,0,12,10,12],[11,9,0,0,0,11,2,0,0,0,0,0,0,9,0,0,0,3,0,0,0,0,3,1,12] >;

C62.47D6 in GAP, Magma, Sage, TeX

C_6^2._{47}D_6
% in TeX

G:=Group("C6^2.47D6");
// GroupNames label

G:=SmallGroup(432,387);
// by ID

G=gap.SmallGroup(432,387);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,1124,4037,537]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽